EconPapers    
Economics at your fingertips  
 

Redundant neural circuits regulate olfactory integration

Wenxing Yang, Taihong Wu, Shasha Tu, Yuang Qin, Chengchen Shen, Jiangyun Li, Myung-Kyu Choi, Fengyun Duan and Yun Zhang

PLOS Genetics, 2022, vol. 18, issue 1, 1-26

Abstract: Olfactory integration is important for survival in a natural habitat. However, how the nervous system processes signals of two odorants present simultaneously to generate a coherent behavioral response is poorly understood. Here, we characterize circuit basis for a form of olfactory integration in Caenorhabditis elegans. We find that the presence of a repulsive odorant, 2-nonanone, that signals threat strongly blocks the attraction of other odorants, such as isoamyl alcohol (IAA) or benzaldehyde, that signal food. Using a forward genetic screen, we found that genes known to regulate the structure and function of sensory neurons, osm-5 and osm-1, played a critical role in the integration process. Loss of these genes mildly reduces the response to the repellent 2-nonanone and disrupts the integration effect. Restoring the function of OSM-5 in either AWB or ASH, two sensory neurons known to mediate 2-nonanone-evoked avoidance, is sufficient to rescue. Sensory neurons AWB and downstream interneurons AVA, AIB, RIM that play critical roles in olfactory sensorimotor response are able to process signals generated by 2-nonanone or IAA or the mixture of the two odorants and contribute to the integration. Thus, our results identify redundant neural circuits that regulate the robust effect of a repulsive odorant to block responses to attractive odorants and uncover the neuronal and cellular basis for this complex olfactory task.Author summary: In their natural environment, animals, including humans, encounter complex olfactory stimuli. Thus, how the brain processes multiple sensory cues to generate a coherent behavioral output is critical for the survival of the animal. In the present study, we combined molecular cellular genetics, optical physiology and behavioral analysis to study a common olfactory phenomenon in which the presence of one odorant blocks the response to another. Our results show that the integrated response is regulated by redundant neuronal circuits that engage several interneurons essential for olfactory sensorimotor responses, a mechanism that likely ensures a robust behavioral response to sensory cues representing information critical for survival.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010029 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 10029&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1010029

DOI: 10.1371/journal.pgen.1010029

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pgen00:1010029