Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells
Derek B Danahy,
Scott M Anthony,
Isaac J Jensen,
Stacey M Hartwig,
Qiang Shan,
Hai-Hui Xue,
John T Harty,
Thomas S Griffith and
Vladimir P Badovinac
PLOS Pathogens, 2017, vol. 13, issue 9, 1-32
Abstract:
Sepsis is a systemic infection that enhances host vulnerability to secondary infections normally controlled by T cells. Using CLP sepsis model, we observed that sepsis induces apoptosis of circulating memory CD8 T-cells (TCIRCM) and diminishes their effector functions, leading to impaired CD8 T-cell mediated protection to systemic pathogen re-infection. In the context of localized re-infections, tissue resident memory CD8 T-cells (TRM) provide robust protection in a variety of infectious models. TRM rapidly ‘sense’ infection in non-lymphoid tissues and ‘alarm’ the host by enhancing immune cell recruitment to the site of the infection to accelerate pathogen clearance. Here, we show that compared to pathogen-specific TCIRCM, sepsis does not invoke significant numerical decline of Vaccinia virus induced skin-TRM keeping their effector functions (e.g., Ag-dependent IFN-γ production) intact. IFN-γ-mediated recruitment of immune cells to the site of localized infection was, however, reduced in CLP hosts despite TRM maintaining their ‘sensing and alarming’ functions. The capacity of memory CD8 T-cells in the septic environment to respond to inflammatory cues and arrive to the site of secondary infection/antigen exposure remained normal suggesting T-cell-extrinsic factors contributed to the observed lesion. Mechanistically, we showed that IFN-γ produced rapidly during sepsis-induced cytokine storm leads to reduced IFN-γR1 expression on vascular endothelium. As a consequence, decreased expression of adhesion molecules and/or chemokines (VCAM1 and CXCL9) on skin endothelial cells in response to TRM-derived IFN-γ was observed, leading to sub-optimal bystander-recruitment of effector cells and increased susceptibility to pathogen re-encounter. Importantly, as visualized by intravital 2-photon microscopy, exogenous administration of CXCL9/10 was sufficient to correct sepsis-induced impairments in recruitment of effector cells at the localized site of TRM antigen recognition. Thus, sepsis has the capacity to alter skin TRM anamnestic responses without directly impacting TRM number and/or function, an observation that helps to further define the immunoparalysis phase in sepsis survivors.Author summary: Infectious pathogens are generally relegated within barrier tissues; however, when infections enter the bloodstream the host enters a septic state that (when severe enough) can lead to widespread tissue damage and death. After resolution of acute stage of sepsis, patients often display enhanced susceptibility to secondary infections resulting from quantitative and qualitative alterations in the immune response. Previously, we and others have shown that sepsis dramatically reduces the number and function of memory CD8 T cells within the host, contributing to the state of immunoparalysis early after sepsis induction. The present study directly examines the impact of sepsis on tissue resident memory CD8 T cells (TRM) that are restricted to barrier tissues and provide protection to localized infections. In contrast to circulating memory T cells found within lymphoid tissues, the number and function of TRM within non-lymphoid peripheral tissue (such as the skin) was maintained during sepsis suggesting a protective niche for memory CD8 T cells within barrier tissues of septic hosts. However, the capacity of TRM to provide protection upon re-infection was severely diminished in septic hosts, which was attributed to a sepsis-induced lesion in TRM-extrinsic factors. Thus, this report supports the notion that sepsis has the capacity to influence host response to pathogen re-infection either by directly influencing memory CD8 T cell populations or by preventing other cell types to properly recognize localized pathogen-induced alarming signals delivered by resident memory CD8 T cells.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006569 (text/html)
https://journals.plos.org/plospathogens/article/fi ... 06569&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:ppat00:1006569
DOI: 10.1371/journal.ppat.1006569
Access Statistics for this article
More articles in PLOS Pathogens from Public Library of Science
Bibliographic data for series maintained by plospathogens ().