Optimized Ensemble Support Vector Regression Models for Predicting Stock Prices with Multiple Kernels
Subba Reddy Thumu and
Geethanjali Nellore
Acta Informatica Pragensia, 2024, vol. 2024, issue 1, 24-37
Abstract:
Stock forecasting is a complicated and daily challenge for investors because of the non-linearity of the market and the high volatility of financial assets such as stocks, bonds and other commodities. There is a need for a powerful and adaptive stock prediction model that handles complexities and provides accurate predictions. The support vector regression (SVR) model is one of the most prominent machine learning models for forecasting time series data. An ensemble hyperbolic tangent kernel SVR (HTK-SVR-BO) is proposed in this paper, combining Tanh and inverse Tanh kernels with Bayesian optimization. Combining the strengths of multiple kernels using the ensemble technique and then using optimization to identify the optimal values for each SVR model to enhance the ensemble model performance is possible. Our proposed model is compared with an ensemble SVR model (LPR-SVR-BO), which uses well-known SVR kernel types, including linear, polynomial and radial basis function (RBF). We apply the proposed models to Microsoft Corporation (MSFT) stock prices. The mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), R2 score (model accuracy) and mean absolute percentage error (MAPE) are the regression metrics used to compare the effectiveness of each ensemble model. In our comparison, HTK-SVR-BO performs better in terms of regression metrics compared to LPR-SVR-BO and achieves results of 0.27424, 0.13392, 0.36595, 0.99997 and 5.2331 respectively. According to the analysis, the proposed model is more predictive and may generalize to previously unknown data more effectively, so it can be accurate when forecasting future stock prices.
Keywords: Microsoft corporation (MSFT); Stock forecast; SVR; Hyperbolic tangent kernels (HTK); Linear polynomial RBF kernels (LPR); Ensemble model; Bayesian optimization (BO); Regression metrics (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://aip.vse.cz/doi/10.18267/j.aip.226.html (text/html)
http://aip.vse.cz/doi/10.18267/j.aip.226.pdf (application/pdf)
free of charge
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:prg:jnlaip:v:2024:y:2024:i:1:id:226:p:24-37
Ordering information: This journal article can be ordered from
Redakce Acta Informatica Pragensia, Katedra systémové analýzy, Vysoká škola ekonomická v Praze, nám. W. Churchilla 4, 130 67 Praha 3
http://aip.vse.cz
DOI: 10.18267/j.aip.226
Access Statistics for this article
Acta Informatica Pragensia is currently edited by Editorial Office
More articles in Acta Informatica Pragensia from Prague University of Economics and Business Contact information at EDIRC.
Bibliographic data for series maintained by Stanislav Vojir ().