A Comment on “A Review of Student Test Properties in Condition of Multifactorial Linear Regression”
Eric Eisenstat
Journal for Economic Forecasting, 2010, issue 3, 53-73
Abstract:
A recent article (Pavelescu, 2009) proposes a correction to the conventional student-t test of significance in linear regression models, but offers no formal description of its properties. This comment formally characterizes the sampling properties of the corrected student-t statistic. In application to multifactorial regressions, it turns out that the corrected student-t statistic is not ancillary – its sampling distribution depends on unknown nuisance parameters.Therefore, it is impossible to reasonably compute critical values and operatively designate a rejection criterion using such a test statistic, which makes the proposed testing procedure impractical. Some suggestions regarding the search for similar testing procedures are proposed and a Bayesian alternative is further discussed.
Keywords: multifactorial classical normal regression; collinearity; multicollinearity; significance test; sampling distributions; power functions; Bayesian linear regression; prior information; posterior distributions (search for similar items in EconPapers)
JEL-codes: C11 C12 (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.ipe.ro/rjef/rjef3_10/rjef3_10_3.pdf
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rjr:romjef:v::y:2010:i:3:p:53-73
Access Statistics for this article
Journal for Economic Forecasting is currently edited by Lucian Liviu Albu and Corina Saman
More articles in Journal for Economic Forecasting from Institute for Economic Forecasting Contact information at EDIRC.
Bibliographic data for series maintained by Corina Saman ( this e-mail address is bad, please contact ).