EconPapers    
Economics at your fingertips  
 

Stratified Sampling Using Cluster Analysis

Elizabeth Tipton

Evaluation Review, 2013, vol. 37, issue 2, 109-139

Abstract: Background: An important question in the design of experiments is how to ensure that the findings from the experiment are generalizable to a larger population. This concern with generalizability is particularly important when treatment effects are heterogeneous and when selecting units into the experiment using random sampling is not possible—two conditions commonly met in large-scale educational experiments. Method: This article introduces a model-based balanced-sampling framework for improving generalizations, with a focus on developing methods that are robust to model misspecification. Additionally, the article provides a new method for sample selection within this framework: First units in an inference population are divided into relatively homogenous strata using cluster analysis, and then the sample is selected using distance rankings. Result: In order to demonstrate and evaluate the method, a reanalysis of a completed experiment is conducted. This example compares samples selected using the new method with the actual sample used in the experiment. Results indicate that even under high nonresponse, balance is better on most covariates and that fewer coverage errors result. Conclusion: The article concludes with a discussion of additional benefits and limitations of the method.

Keywords: cluster analysis; experimental design; external validity; model-based sampling; stratified sampling; treatment effect heterogeneity (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0193841X13516324 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:evarev:v:37:y:2013:i:2:p:109-139

DOI: 10.1177/0193841X13516324

Access Statistics for this article

More articles in Evaluation Review
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:evarev:v:37:y:2013:i:2:p:109-139