Beyond “Treatment Versus Controlâ€: How Bayesian Analysis Makes Factorial Experiments Feasible in Education Research
Daniel Kassler,
Ira Nichols-Barrer and
Mariel Finucane
Evaluation Review, 2020, vol. 44, issue 4, 238-261
Abstract:
Background: Researchers often wish to test a large set of related interventions or approaches to implementation. A factorial experiment accomplishes this by examining not only basic treatment–control comparisons but also the effects of multiple implementation “factors†such as different dosages or implementation strategies and the interactions between these factor levels. However, traditional methods of statistical inference may require prohibitively large sample sizes to perform complex factorial experiments. Objectives: We present a Bayesian approach to factorial design. Through the use of hierarchical priors and partial pooling, we show how Bayesian analysis substantially increases the precision of estimates in complex experiments with many factors and factor levels, while controlling the risk of false positives from multiple comparisons. Research design: Using an experiment we performed for the U.S. Department of Education as a motivating example, we perform power calculations for both classical and Bayesian methods. We repeatedly simulate factorial experiments with a variety of sample sizes and numbers of treatment arms to estimate the minimum detectable effect (MDE) for each combination. Results: The Bayesian approach yields substantially lower MDEs when compared with classical methods for complex factorial experiments. For example, to test 72 treatment arms (five factors with two or three levels each), a classical experiment requires nearly twice the sample size as a Bayesian experiment to obtain a given MDE. Conclusions: Bayesian methods are a valuable tool for researchers interested in studying complex interventions. They make factorial experiments with many treatment arms vastly more feasible.
Keywords: methodological development; content area; design and evaluation of programs and policies; experimental design; factorial design; Bayesian modeling (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0193841X18818903 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:evarev:v:44:y:2020:i:4:p:238-261
DOI: 10.1177/0193841X18818903
Access Statistics for this article
More articles in Evaluation Review
Bibliographic data for series maintained by SAGE Publications ().