Depth-based human activity recognition via multi-level fused features and fast broad learning system
Huang Yao,
Mengting Yang,
Tiantian Chen,
Yantao Wei and
Yu Zhang
International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 2, 1550147720907830
Abstract:
Human activity recognition using depth videos remains a challenging problem while in some applications the available training samples is limited. In this article, we propose a new method for human activity recognition by crafting an integrated descriptor called multi-level fused features for depth sequences and devising a fast broad learning system based on matrix decomposition for classification. First, the surface normals are computed from original depth maps; the histogram of the surface normal orientations is obtained as a low-level feature by accumulating the contributions from normals, then a high-level feature is acquired by sparse coding and pooling on the aggregation of polynormals. After that, the principal component analysis is applied to the conjunction of the two-level features in order to obtain a low-dimensional and discriminative fused feature. At last, fast broad learning system based on matrix decomposition is proposed to accelerate the training process and enhance the classification results. The recognition results on three benchmark data sets show that our method outperforms the state-of-the-art methods in term of accuracy, especially when the number of training samples is small.
Keywords: Human activity recognition; broad learning system; multi-level fused features; principal component analysis (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720907830 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:2:p:1550147720907830
DOI: 10.1177/1550147720907830
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().