The Minimally Important Difference Significant Criterion for Sample Size
Richard J. Harris and
Dana Quade
Journal of Educational and Behavioral Statistics, 1992, vol. 17, issue 1, 27-49
Abstract:
For a wide range of tests of single-df hypotheses, the sample size needed to achieve 50% power is readily approximated by setting N such that a significance test conducted on data that fit one’s assumptions perfectly just barely achieves statistical significance at one’s chosen alpha level. If the effect size assumed in establishing one’s N is the minimally important effect size (i.e., that effect size such that population differences or correlations smaller than that are not of any practical or theoretical significance, whether statistically significant or not), then 50% power is optimal, because the probability of rejecting the null hypothesis should be greater than .5 when the population difference is of practical or theoretical significance but lower than .5 when it is not. Moreover, the actual power of the test in this case will be considerably higher than .5, exceeding .95 for a population difference two or more times as large as the minimally important difference (MID). This minimally important difference significant (MIDS) criterion extends naturally to specific comparisons following (or substituting for) overall tests such as the ANOVA F and chi-square for contingency tables, although the power of the overall test (i.e., the probability of finding some statistically significant specific comparison) is considerably greater than .5 when the MIDS criterion is applied to the overall test. However, the proper focus for power computations is one or more specific comparisons (rather than the omnibus test), and the MIDS criterion is well suited to setting sample size on this basis. Whereas N mids (the sample size specified by the MIDS criterion) is much too small for the case in which we wish to prove the modified H 0 that there is no important population effect, it nonetheless provides a useful metric for specifying the necessary sample size. In particular, the sample size needed to have a 1 – α probability that the (1 − α)-level confidence interval around one’s population parameter includes no important departure from H 0 is four times N mids when H 0 is true and approximately [4/(1 – b) 2 ].N MIDS when b (the ratio between the actual population difference and the minimally important difference) is between zero and unity. The MIDS criterion for sample size provides a useful alternative to the methods currently most commonly employed and taught.
Keywords: power; sample size (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.3102/10769986017001027 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:jedbes:v:17:y:1992:i:1:p:27-49
DOI: 10.3102/10769986017001027
Access Statistics for this article
More articles in Journal of Educational and Behavioral Statistics
Bibliographic data for series maintained by SAGE Publications ().