A Comparison of Imputation Methods for Bayesian Factor Analysis Models
Edgar C. Merkle
Journal of Educational and Behavioral Statistics, 2011, vol. 36, issue 2, 257-276
Abstract:
Imputation methods are popular for the handling of missing data in psychology. The methods generally consist of predicting missing data based on observed data, yielding a complete data set that is amiable to standard statistical analyses. In the context of Bayesian factor analysis, this article compares imputation under an unrestricted multivariate normal model (Multiple Imputation [MI]) to imputation under the statistical model of interest (Data Augmentation [DA]). The former method is popular in applied research, but the latter method is more straightforward from a Bayesian perspective. Simulations demonstrate that DA yields less-biased parameter estimates for moderate sample sizes and high missingness proportions. MI, however, yields less-biased parameter estimates for large sample sizes with misspecified models. The incorporation of auxiliary variables in DA is also addressed, and BUGS code is provided.
Keywords: missing data; factor analysis; data augmentation; multiple imputation; BUGS (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.sagepub.com/doi/10.3102/1076998610375833 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:jedbes:v:36:y:2011:i:2:p:257-276
DOI: 10.3102/1076998610375833
Access Statistics for this article
More articles in Journal of Educational and Behavioral Statistics
Bibliographic data for series maintained by SAGE Publications ().