How Generalizable Is Your Experiment? An Index for Comparing Experimental Samples and Populations
Elizabeth Tipton
Journal of Educational and Behavioral Statistics, 2014, vol. 39, issue 6, 478-501
Abstract:
Although a large-scale experiment can provide an estimate of the average causal impact for a program, the sample of sites included in the experiment is often not drawn randomly from the inference population of interest. In this article, we provide a generalizability index that can be used to assess the degree of similarity between the sample of units in an experiment and one or more inference populations on a set of selected covariates. The index takes values between 0 and 1 and indicates both when a sample is like a miniature of the population and how well reweighting methods may perform when differences exist. Results of simulation studies are provided that develop rules of thumb for interpretation as well as an example.
Keywords: generalizability; external validity; experiment; causal inference; index (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.3102/1076998614558486 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:jedbes:v:39:y:2014:i:6:p:478-501
DOI: 10.3102/1076998614558486
Access Statistics for this article
More articles in Journal of Educational and Behavioral Statistics
Bibliographic data for series maintained by SAGE Publications ().