Incorporating Covariates Into Stochastic Blockmodels
Tracy M. Sweet
Additional contact information
Tracy M. Sweet: University of Maryland
Journal of Educational and Behavioral Statistics, 2015, vol. 40, issue 6, 635-664
Abstract:
Social networks in education commonly involve some form of grouping, such as friendship cliques or teacher departments, and blockmodels are a type of statistical social network model that accommodate these grouping or blocks by assuming different within-group tie probabilities than between-group tie probabilities. We describe a class of models, covariate stochastic blockmodels (CSBMs), that incorporates covariates into blockmodels. These models not only estimate the effects of covariates in the presence of the block structure but also can determine differential covariate effects such as within blocks versus between blocks. For example, education researchers can now determine those factors that mitigate relationships both within schools and between schools. We introduce several CSBMs as examples and present a series of simulation studies to investigate both the feasibility and some operating characteristics as well as fit CSBMs to real network data.
Keywords: social network analysis; blockmodels; Bayesian statistics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.3102/1076998615606110 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:jedbes:v:40:y:2015:i:6:p:635-664
DOI: 10.3102/1076998615606110
Access Statistics for this article
More articles in Journal of Educational and Behavioral Statistics
Bibliographic data for series maintained by SAGE Publications ().