EconPapers    
Economics at your fingertips  
 

Interval Estimation of Latent Variable Scores in Item Response Theory

Yang Liu and Ji Seung Yang

Journal of Educational and Behavioral Statistics, 2018, vol. 43, issue 3, 259-285

Abstract: The uncertainty arising from item parameter estimation is often not negligible and must be accounted for when calculating latent variable (LV) scores in item response theory (IRT). It is particularly so when the calibration sample size is limited and/or the calibration IRT model is complex. In the current work, we treat two-stage IRT scoring as a predictive inference problem: The target of prediction is a random variable that follows the true posterior of the LV conditional on the response pattern being scored. Various Bayesian, fiducial, and frequentist prediction intervals of LV scores, which can be obtained from a simple yet generic Monte Carlo recipe, are evaluated and contrasted via simulations based on several measures of prediction quality. An empirical data example is also presented to illustrate the use of candidate methods.

Keywords: item response theory; scoring; multiple imputation; Bayesian inference; generalized fiducial inference (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.3102/1076998617732764 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:jedbes:v:43:y:2018:i:3:p:259-285

DOI: 10.3102/1076998617732764

Access Statistics for this article

More articles in Journal of Educational and Behavioral Statistics
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:jedbes:v:43:y:2018:i:3:p:259-285