EconPapers    
Economics at your fingertips  
 

Meta-Analytical SEM: Equivalence Between Maximum Likelihood and Generalized Least Squares

Ke-Hai Yuan and Yutaka Kano
Additional contact information
Ke-Hai Yuan: Nanjing University of Posts and Telecommunications University of Notre Dame
Yutaka Kano: Osaka University

Journal of Educational and Behavioral Statistics, 2018, vol. 43, issue 6, 693-720

Abstract: Meta-analysis plays a key role in combining studies to obtain more reliable results. In social, behavioral, and health sciences, measurement units are typically not well defined. More meaningful results can be obtained by standardizing the variables and via the analysis of the correlation matrix. Structural equation modeling (SEM) with the combined correlations, called meta-analytical SEM (MASEM), is a powerful tool for examining the relationship among latent constructs as well as those between the latent constructs and the manifest variables. Three classes of methods have been proposed for MASEM: (1) generalized least squares (GLS) in combining correlations and in estimating the structural model, (2) normal-distribution-based maximum likelihood (ML) in combining the correlations and then GLS in estimating the structural model (ML-GLS), and (3) ML in combining correlations and in estimating the structural model (ML). The current article shows that these three methods are equivalent. In particular, (a) the GLS method for combining correlation matrices in meta-analysis is asymptotically equivalent to ML, (b) the three methods (GLS, ML-GLS, ML) for MASEM with correlation matrices are asymptotically equivalent, (c) they also perform equally well empirically, and (d) the GLS method for SEM with the sample correlation matrix in a single study is asymptotically equivalent to ML, which has being discussed extensively in the SEM literature regarding whether the analysis of a correlation matrix yields consistent standard errors and asymptotically valid test statistics. The results and analysis suggest that a sample-size weighted GLS method is preferred for combining correlations and for MASEM.

Keywords: combining correlations; generalized least squares; maximum likelihood; Monte Carlo; random-effect model (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.3102/1076998618787799 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:jedbes:v:43:y:2018:i:6:p:693-720

DOI: 10.3102/1076998618787799

Access Statistics for this article

More articles in Journal of Educational and Behavioral Statistics
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:jedbes:v:43:y:2018:i:6:p:693-720