Estimation of Expected Fisher Information for IRT Models
Scott Monroe
Additional contact information
Scott Monroe: University of Massachusetts Amherst
Journal of Educational and Behavioral Statistics, 2019, vol. 44, issue 4, 431-447
Abstract:
In item response theory (IRT) modeling, the Fisher information matrix is used for numerous inferential procedures such as estimating parameter standard errors, constructing test statistics, and facilitating test scoring. In principal, these procedures may be carried out using either the expected information or the observed information. However, in practice, the expected information is not typically used, as it often requires a large amount of computation. In the present research, two methods to approximate the expected information by Monte Carlo are proposed. The first method is suitable for less complex IRT models such as unidimensional models. The second method is generally applicable but is designed for use with more complex models such as high-dimensional IRT models. The proposed methods are compared to existing methods using real data sets and a simulation study. The comparisons are based on simple structure multidimensional IRT models with two-parameter logistic item models.
Keywords: item response theory; Fisher information; maximum likelihood (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.sagepub.com/doi/10.3102/1076998619838240 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:jedbes:v:44:y:2019:i:4:p:431-447
DOI: 10.3102/1076998619838240
Access Statistics for this article
More articles in Journal of Educational and Behavioral Statistics
Bibliographic data for series maintained by SAGE Publications ().