IRT and MIRT Models for Item Parameter Estimation With Multidimensional Multistage Tests
Paul A. Jewsbury and
Peter W. van Rijn
Additional contact information
Paul A. Jewsbury: Educational Testing Service
Peter W. van Rijn: ETS Global
Journal of Educational and Behavioral Statistics, 2020, vol. 45, issue 4, 383-402
Abstract:
In large-scale educational assessment data consistent with a simple-structure multidimensional item response theory (MIRT) model, where every item measures only one latent variable, separate unidimensional item response theory (UIRT) models for each latent variable are often calibrated for practical reasons. While this approach can be valid for data from a linear test, unacceptable item parameter estimates are obtained when data arise from a multistage test (MST). We explore this situation from a missing data perspective and show mathematically that MST data will be problematic for calibrating multiple UIRT models but not MIRT models. This occurs because some items that were used in the routing decision are excluded from the separate UIRT models, due to measuring a different latent variable. Both simulated and real data from the National Assessment of Educational Progress are used to further confirm and explore the unacceptable item parameter estimates. The theoretical and empirical results confirm that only MIRT models are valid for item calibration of multidimensional MST data.
Keywords: multistage testing; MIRT; item calibration; missing data (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.sagepub.com/doi/10.3102/1076998619881790 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:jedbes:v:45:y:2020:i:4:p:383-402
DOI: 10.3102/1076998619881790
Access Statistics for this article
More articles in Journal of Educational and Behavioral Statistics
Bibliographic data for series maintained by SAGE Publications ().