EconPapers    
Economics at your fingertips  
 

Bayesian Analysis Methods for Two-Level Diagnosis Classification Models

Kazuhiro Yamaguchi
Additional contact information
Kazuhiro Yamaguchi: University of Tsukuba

Journal of Educational and Behavioral Statistics, 2023, vol. 48, issue 6, 773-809

Abstract: Understanding whether or not different types of students master various attributes can aid future learning remediation. In this study, two-level diagnostic classification models (DCMs) were developed to represent the probabilistic relationship between external latent classes and attribute mastery patterns. Furthermore, variational Bayesian (VB) inference and Gibbs sampling Markov chain Monte Carlo methods were developed for parameter estimation of the two-level DCMs. The results of a parameter recovery simulation study show that both techniques appropriately recovered the true parameters; Gibbs sampling in particular was slightly more accurate than VB, whereas VB performed estimation much faster than Gibbs sampling. The two-level DCMs with the proposed Bayesian estimation methods were further applied to fourth-grade data obtained from the Trends in International Mathematics and Science Study 2007 and indicated that mathematical activities in the classroom could be organized into four latent classes, with each latent class connected to different attribute mastery patterns. This information can be employed in educational intervention to focus on specific latent classes and elucidate attribute patterns.

Keywords: diagnostic classification models; latent class analysis; variational Bayesian inference; Gibbs sampling algorithm (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.sagepub.com/doi/10.3102/10769986231173594 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:jedbes:v:48:y:2023:i:6:p:773-809

DOI: 10.3102/10769986231173594

Access Statistics for this article

More articles in Journal of Educational and Behavioral Statistics
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:jedbes:v:48:y:2023:i:6:p:773-809