EconPapers    
Economics at your fingertips  
 

Analyzing Polytomous Test Data: A Comparison Between an Information-Based IRT Model and the Generalized Partial Credit Model

Joakim Wallmark, James O. Ramsay, Juan Li and Marie Wiberg
Additional contact information
Joakim Wallmark: Umeå University
James O. Ramsay: McGill University
Juan Li: Ottawa Hospital Research Institute
Marie Wiberg: Umeå University

Journal of Educational and Behavioral Statistics, 2024, vol. 49, issue 5, 753-779

Abstract: Item response theory (IRT) models the relationship between the possible scores on a test item against a test taker’s attainment of the latent trait that the item is intended to measure. In this study, we compare two models for tests with polytomously scored items: the optimal scoring (OS) model, a nonparametric IRT model based on the principles of information theory, and the generalized partial credit (GPC) model, a widely used parametric alternative. We evaluate these models using both simulated and real test data. In the real data examples, the OS model demonstrates superior model fit compared to the GPC model across all analyzed datasets. In our simulation study, the OS model outperforms the GPC model in terms of bias, but at the cost of larger standard errors for the probabilities along the estimated item response functions. Furthermore, we illustrate how surprisal arc length, an IRT scale invariant measure of ability with metric properties, can be used to put scores from vastly different types of IRT models on a common scale. We also demonstrate how arc length can be a viable alternative to sum scores for scoring test takers.

Keywords: item response theory; item characteristic curves; nonparametric IRT; simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.3102/10769986231207879 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:jedbes:v:49:y:2024:i:5:p:753-779

DOI: 10.3102/10769986231207879

Access Statistics for this article

More articles in Journal of Educational and Behavioral Statistics
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:jedbes:v:49:y:2024:i:5:p:753-779