Some Health States Are Better Than Others
Jeremy D. Goldhaber-Fiebert and
Hawre J. Jalal
Medical Decision Making, 2016, vol. 36, issue 8, 927-940
Abstract:
Background . Probabilistic sensitivity analyses (PSA) may lead policy makers to take nonoptimal actions due to misestimates of decision uncertainty caused by ignoring correlations. We developed a method to establish joint uncertainty distributions of quality-of-life (QoL) weights exploiting ordinal preferences over health states. Methods . Our method takes as inputs independent, univariate marginal distributions for each QoL weight and a preference ordering. It establishes a correlation matrix between QoL weights intended to preserve the ordering. It samples QoL weight values from their distributions, ordering them with the correlation matrix. It calculates the proportion of samples violating the ordering, iteratively adjusting the correlation matrix until this proportion is below an arbitrarily small threshold. We compare our method with the uncorrelated method and other methods for preserving rank ordering in terms of violation proportions and fidelity to the specified marginal distributions along with PSA and expected value of partial perfect information (EVPPI) estimates, using 2 models: 1) a decision tree with 2 decision alternatives and 2) a chronic hepatitis C virus (HCV) Markov model with 3 alternatives. Results . All methods make tradeoffs between violating preference orderings and altering marginal distributions. For both models, our method simultaneously performed best, with largest performance advantages when distributions reflected wider uncertainty. For PSA, larger changes to the marginal distributions induced by existing methods resulted in differing conclusions about which strategy was most likely optimal. For EVPPI, both preference order violations and altered marginal distributions caused existing methods to misestimate the maximum value of seeking additional information, sometimes concluding that there was no value. Conclusions . Analysts can characterize the joint uncertainty in QoL weights to improve PSA and value-of-information estimates using Open Source implementations of our method.
Keywords: probabilistic sensitivity analysis; joint distribution; parameter correlation; value of information; expected value of partial perfect information; bias; correlated parameters (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0272989X15605091 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:medema:v:36:y:2016:i:8:p:927-940
DOI: 10.1177/0272989X15605091
Access Statistics for this article
More articles in Medical Decision Making
Bibliographic data for series maintained by SAGE Publications ().