EconPapers    
Economics at your fingertips  
 

Evaluating Parameter Uncertainty in a Simulation Model of Cancer Using Emulators

Tiago M. de Carvalho, Eveline A. M. Heijnsdijk, Luc Coffeng and Harry J. de Koning
Additional contact information
Tiago M. de Carvalho: Department of Public Health, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
Eveline A. M. Heijnsdijk: Department of Public Health, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
Luc Coffeng: Department of Public Health, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
Harry J. de Koning: Department of Public Health, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands

Medical Decision Making, 2019, vol. 39, issue 4, 405-413

Abstract: Background . Microsimulation models have been extensively used in the field of cancer modeling. However, there is substantial uncertainty regarding estimates from these models, for example, overdiagnosis in prostate cancer. This is usually not thoroughly examined due to the high computational effort required. Objective . To quantify uncertainty in model outcomes due to uncertainty in model parameters, using a computationally efficient emulator (Gaussian process regression) instead of the model. Methods . We use a microsimulation model of prostate cancer (microsimulation screening analysis [MISCAN]) to simulate individual life histories. We analyze the effect of parametric uncertainty on overdiagnosis with probabilistic sensitivity analyses (ProbSAs). To minimize the number of MISCAN runs needed for ProbSAs, we emulate MISCAN, using data pairs of parameter values and outcomes to fit a Gaussian process regression model. We evaluate to what extent the emulator accurately reproduces MISCAN by computing its prediction error. Results . Using an emulator instead of MISCAN, we may reduce the computation time necessary to run a ProbSA by more than 85%. The average relative prediction error of the emulator for overdiagnosis equaled 1.7%. We predicted that 42% of screen-detected men are overdiagnosed, with an associated empirical confidence interval between 38% and 48%. Sensitivity analyses show that the accuracy of the emulator is sensitive to which model parameters are included in the training runs. Conclusions . For a computationally expensive simulation model with a large number of parameters, we show it is possible to conduct a ProbSA, within a reasonable computation time, by using a Gaussian process regression emulator instead of the original simulation model.

Keywords: overdiagnosis; prostate cancer; probabilistic sensitivity analyses; Gaussian process regression; emulators (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0272989X19837631 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:medema:v:39:y:2019:i:4:p:405-413

DOI: 10.1177/0272989X19837631

Access Statistics for this article

More articles in Medical Decision Making
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:medema:v:39:y:2019:i:4:p:405-413