Generalized Linear Models for Flexible Parametric Modeling of the Hazard Function
Benjamin Kearns,
Matt D. Stevenson,
Kostas Triantafyllopoulos () and
Andrea Manca
Additional contact information
Benjamin Kearns: The University of Sheffield, Sheffield, UK
Matt D. Stevenson: The University of Sheffield, Sheffield, UK
Andrea Manca: The University of Sheffield, Sheffield, UK
Medical Decision Making, 2019, vol. 39, issue 7, 867-878
Abstract:
Background. Parametric modeling of survival data is important, and reimbursement decisions may depend on the selected distribution. Accurate predictions require sufficiently flexible models to describe adequately the temporal evolution of the hazard function. A rich class of models is available among the framework of generalized linear models (GLMs) and its extensions, but these models are rarely applied to survival data. This article describes the theoretical properties of these more flexible models and compares their performance to standard survival models in a reproducible case study. Methods. We describe how survival data may be analyzed with GLMs and their extensions: fractional polynomials, spline models, generalized additive models, generalized linear mixed (frailty) models, and dynamic survival models. For each, we provide a comparison of the strengths and limitations of these approaches. For the case study, we compare within-sample fit, the plausibility of extrapolations, and extrapolation performance based on data splitting. Results. Viewing standard survival models as GLMs shows that many impose a restrictive assumption of linearity. For the case study, GLMs provided better within-sample fit and more plausible extrapolations. However, they did not improve extrapolation performance. We also provide guidance to aid in choosing between the different approaches based on GLMs and their extensions. Conclusions. The use of GLMs for parametric survival analysis can outperform standard parametric survival models, although the improvements were modest in our case study. This approach is currently seldom used. We provide guidance on both implementing these models and choosing between them. The reproducible case study will help to increase uptake of these models.
Keywords: dynamic survival models; fractional polynomials; frailty models; generalized additive models; generalized linear mixed models; splines; survival analysis; time to event (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0272989X19873661 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:medema:v:39:y:2019:i:7:p:867-878
DOI: 10.1177/0272989X19873661
Access Statistics for this article
More articles in Medical Decision Making
Bibliographic data for series maintained by SAGE Publications ().