EconPapers    
Economics at your fingertips  
 

Personalizing Medical Treatment Decisions: Integrating Meta-analytic Treatment Comparisons with Patient-Specific Risks and Preferences

Christopher Weyant, Margaret L. Brandeau and Sanjay Basu
Additional contact information
Christopher Weyant: Department of Management Science and Engineering, Stanford University, Stanford, CA, USA
Margaret L. Brandeau: Department of Management Science and Engineering, Stanford University, Stanford, CA, USA
Sanjay Basu: Center for Primary Care, Harvard Medical School, Boston, MA, USA

Medical Decision Making, 2019, vol. 39, issue 8, 998-1009

Abstract: Background. Network meta-analyses (NMAs) that compare treatments for a given condition allow physicians to identify which treatments have higher or lower probabilities of reducing the risks of disease complications or increasing the risks of treatment side effects. Translating these data into personalized treatment plans requires integration of NMA data with patient-specific pretreatment risk estimates and preferences regarding treatment objectives and acceptable risks. Methods. We introduce a modeling framework to integrate data probabilistically from NMAs with data on individualized patient risk estimates for disease outcomes, treatment preferences (such as willingness to incur greater side effects for increased life expectancy), and risk preferences. We illustrate the modeling framework by creating personalized plans for antipsychotic drug treatment and evaluating their effectiveness and cost-effectiveness. Results. Compared with treating all patients with the drug that yields the greatest quality-adjusted life-years (QALYs) on average (amisulpride), personalizing the selection of antipsychotic drugs for schizophrenia patients over the next 5 years would be expected to yield 0.33 QALYs (95% credible interval [crI]: 0.30–0.37) per patient at an incremental cost of $4849/QALY gained (95% crI: dominant–$12,357), versus 0.29 and 0.04 QALYs per patient when accounting for only risks or preferences, respectively, but not both. Limitations. The analysis uses a linear, additive utility function to reflect patient treatment preferences and does not consider potential variations in patient time discounting. Conclusions. Our modeling framework rigorously computes what physicians normally have to do mentally. By integrating 3 key components of personalized medicine—evidence on efficacy, patient risks, and patient preferences—the modeling framework can provide personalized treatment decisions to improve patient health outcomes.

Keywords: medical decision making; personalized medicine; schizophrenia (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0272989X19884927 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:medema:v:39:y:2019:i:8:p:998-1009

DOI: 10.1177/0272989X19884927

Access Statistics for this article

More articles in Medical Decision Making
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:medema:v:39:y:2019:i:8:p:998-1009