Blended Survival Curves: A New Approach to Extrapolation for Time-to-Event Outcomes from Clinical Trials in Health Technology Assessment
Zhaojing Che,
Nathan Green and
Gianluca Baio
Additional contact information
Zhaojing Che: Department of Statistical Science, University College London, Gower Street, London UK
Nathan Green: Department of Statistical Science, University College London, Gower Street, London UK
Gianluca Baio: Department of Statistical Science, University College London, Gower Street, London UK
Medical Decision Making, 2023, vol. 43, issue 3, 299-310
Abstract:
Background Survival extrapolation is essential in cost-effectiveness analysis to quantify the lifetime survival benefit associated with a new intervention, due to the restricted duration of randomized controlled trials (RCTs). Current approaches of extrapolation often assume that the treatment effect observed in the trial can continue indefinitely, which is unrealistic and may have a huge impact on decisions for resource allocation. Objective We introduce a novel methodology as a possible solution to alleviate the problem of survival extrapolation with heavily censored data from clinical trials. Method The main idea is to mix a flexible model (e.g., Cox semiparametric) to fit as well as possible the observed data and a parametric model encoding assumptions on the expected behavior of underlying long-term survival. The two are “blended†into a single survival curve that is identical with the Cox model over the range of observed times and gradually approaching the parametric model over the extrapolation period based on a weight function. The weight function regulates the way two survival curves are blended, determining how the internal and external sources contribute to the estimated survival over time. Results A 4-y follow-up RCT of rituximab in combination with fludarabine and cyclophosphamide versus fludarabine and cyclophosphamide alone for the first-line treatment of chronic lymphocytic leukemia is used to illustrate the method. Conclusion Long-term extrapolation from immature trial data may lead to significantly different estimates with various modelling assumptions. The blending approach provides sufficient flexibility, allowing a wide range of plausible scenarios to be considered as well as the inclusion of external information, based, for example, on hard data or expert opinion. Both internal and external validity can be carefully examined. Highlights Interim analyses of trials with limited follow-up are often subject to high degrees of administrative censoring, which may result in implausible long-term extrapolations using standard approaches. In this article, we present an innovative methodology based on “blending†survival curves to relax the traditional proportional hazard assumption and simultaneously incorporate external information to guide the extrapolation. The blended method provides a simple and powerful framework to allow a careful consideration of a wide range of plausible scenarios, accounting for model fit to the short-term data as well as the plausibility of long-term extrapolations.
Keywords: expert opinion; extrapolation; real world evidence; survival modeling in HTA (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0272989X221134545 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:medema:v:43:y:2023:i:3:p:299-310
DOI: 10.1177/0272989X221134545
Access Statistics for this article
More articles in Medical Decision Making
Bibliographic data for series maintained by SAGE Publications ().