EconPapers    
Economics at your fingertips  
 

An effective strategy for initializing the EM algorithm in finite mixture models

Semhar Michael () and Volodymyr Melnykov
Additional contact information
Semhar Michael: South Dakota State University
Volodymyr Melnykov: University of Alabama

Advances in Data Analysis and Classification, 2016, vol. 10, issue 4, No 8, 563-583

Abstract: Abstract Finite mixture models represent one of the most popular tools for modeling heterogeneous data. The traditional approach for parameter estimation is based on maximizing the likelihood function. Direct optimization is often troublesome due to the complex likelihood structure. The expectation–maximization algorithm proves to be an effective remedy that alleviates this issue. The solution obtained by this procedure is entirely driven by the choice of starting parameter values. This highlights the importance of an effective initialization strategy. Despite efforts undertaken in this area, there is no uniform winner found and practitioners tend to ignore the issue, often finding misleading or erroneous results. In this paper, we propose a simple yet effective tool for initializing the expectation–maximization algorithm in the mixture modeling setting. The idea is based on model averaging and proves to be efficient in detecting correct solutions even in those cases when competitors perform poorly. The utility of the proposed methodology is shown through comprehensive simulation study and applied to a well-known classification dataset with good results.

Keywords: Finite mixture models; EM algorithm; Initialization; Model averaging; BIC; 62H30 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11634-016-0264-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:10:y:2016:i:4:d:10.1007_s11634-016-0264-8

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-016-0264-8

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:10:y:2016:i:4:d:10.1007_s11634-016-0264-8