EconPapers    
Economics at your fingertips  
 

Backtransformation: a new representation of data processing chains with a scalar decision function

Mario Michael Krell () and Sirko Straube ()
Additional contact information
Mario Michael Krell: University of Bremen
Sirko Straube: German Research Center for Artificial Intelligence

Advances in Data Analysis and Classification, 2017, vol. 11, issue 2, No 10, 415-439

Abstract: Abstract Data processing often transforms a complex signal using a set of different preprocessing algorithms to a single value as the outcome of a final decision function. Still, it is challenging to understand and visualize the interplay between the algorithms performing this transformation. Especially when dimensionality reduction is used, the original data structure (e.g., spatio-temporal information) is hidden from subsequent algorithms. To tackle this problem, we introduce the backtransformation concept suggesting to look at the combination of algorithms as one transformation which maps the original input signal to a single value. Therefore, it takes the derivative of the final decision function and transforms it back through the previous processing steps via backward iteration and the chain rule. The resulting derivative of the composed decision function in the sample of interest represents the complete decision process. Using it for visualizations might improve the understanding of the process. Often, it is possible to construct a feasible processing chain with affine mappings which simplifies the calculation for the backtransformation and the interpretation of the result a lot. In this case, the affine backtransformation provides the complete parameterization of the processing chain. This article introduces the theory, provides implementation guidelines, and presents three application examples.

Keywords: Affine transformations; Function composition; Processing chain interpretation; Processing chain visualization; 68T30; 68N99; 68W40 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11634-015-0229-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:11:y:2017:i:2:d:10.1007_s11634-015-0229-3

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-015-0229-3

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:11:y:2017:i:2:d:10.1007_s11634-015-0229-3