EconPapers    
Economics at your fingertips  
 

Transitional modeling of experimental longitudinal data with missing values

Mark Rooij ()
Additional contact information
Mark Rooij: Leiden University

Advances in Data Analysis and Classification, 2018, vol. 12, issue 1, No 6, 107-130

Abstract: Abstract Longitudinal categorical data are often collected using an experimental design where the interest is in the differential development of the treatment group compared to the control group. Such differential development is often assessed based on average growth curves but can also be based on transitions. For longitudinal multinomial data we describe a transitional methodology for the statistical analysis based on a distance model. Such a distance approach has two advantages compared to a multinomial regression model: (1) sparse data can be handled more efficiently; (2) a graphical representation of the model can be made to enhance interpretation. Within this approach it is possible to jointly model the observations and missing values by adding a new category to the response variable representing the missingness condition. This approach is investigated in a Monte Carlo simulation study. The results show this is a promising way to deal with missing data, although the mechanism is not yet completely understood in all cases. Finally, an empirical example is presented where the advantages of the modeling procedure are highlighted.

Keywords: Longitudinal data; Missing values; Multinomial data; Multidimensional scaling; Multinomial regression; 62-07; 62P25; 62H30 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11634-015-0226-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:12:y:2018:i:1:d:10.1007_s11634-015-0226-6

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-015-0226-6

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:12:y:2018:i:1:d:10.1007_s11634-015-0226-6