Local generalized quadratic distance metrics: application to the k-nearest neighbors classifier
Karim Abou-Moustafa () and
Frank P. Ferrie ()
Additional contact information
Karim Abou-Moustafa: University of Alberta
Frank P. Ferrie: McGill University
Advances in Data Analysis and Classification, 2018, vol. 12, issue 2, No 8, 363 pages
Abstract:
Abstract Finding the set of nearest neighbors for a query point of interest appears in a variety of algorithms for machine learning and pattern recognition. Examples include k nearest neighbor classification, information retrieval, case-based reasoning, manifold learning, and nonlinear dimensionality reduction. In this work, we propose a new approach for determining a distance metric from the data for finding such neighboring points. For a query point of interest, our approach learns a generalized quadratic distance (GQD) metric based on the statistical properties in a “small” neighborhood for the point of interest. The locally learned GQD metric captures information such as the density, curvature, and the intrinsic dimensionality for the points falling in this particular neighborhood. Unfortunately, learning the GQD parameters under such a local learning mechanism is a challenging problem with a high computational overhead. To address these challenges, we estimate the GQD parameters using the minimum volume covering ellipsoid (MVCE) for a set of points. The advantage of the MVCE is two-fold. First, the MVCE together with the local learning approach approximate the functionality of a well known robust estimator for covariance matrices. Second, computing the MVCE is a convex optimization problem which, in addition to having a unique global solution, can be efficiently solved using a first order optimization algorithm. We validate our metric learning approach on a large variety of datasets and show that the proposed metric has promising results when compared with five algorithms from the literature for supervised metric learning.
Keywords: Query-based operations; k Nearest neighbors; Distance metric learning; Minimum volume covering ellipsoid; Minimum volume ellipsoid estimator; 62H30; 68T10 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11634-017-0286-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:12:y:2018:i:2:d:10.1007_s11634-017-0286-x
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-017-0286-x
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().