EconPapers    
Economics at your fingertips  
 

Clustering of imbalanced high-dimensional media data

Šárka Brodinová (), Maia Zaharieva, Peter Filzmoser, Thomas Ortner and Christian Breiteneder
Additional contact information
Šárka Brodinová: TU Wien
Maia Zaharieva: TU Wien
Thomas Ortner: University of Vienna
Christian Breiteneder: TU Wien

Advances in Data Analysis and Classification, 2018, vol. 12, issue 2, No 5, 284 pages

Abstract: Abstract Media content in large repositories usually exhibits multiple groups of strongly varying sizes. Media of potential interest often form notably smaller groups. Such media groups differ so much from the remaining data that it may be worthy to look at them in more detail. In contrast, media with popular content appear in larger groups. Identifying groups of varying sizes is addressed by clustering of imbalanced data. Clustering highly imbalanced media groups is additionally challenged by the high dimensionality of the underlying features. In this paper, we present the imbalanced clustering (IClust) algorithm designed to reveal group structures in high-dimensional media data. IClust employs an existing clustering method in order to find an initial set of a large number of potentially highly pure clusters which are then successively merged. The main advantage of IClust is that the number of clusters does not have to be pre-specified and that no specific assumptions about the cluster or data characteristics need to be made. Experiments on real-world media data demonstrate that in comparison to existing methods, IClust is able to better identify media groups, especially groups of small sizes.

Keywords: Clustering; Imbalanced data; High-dimensional data; Media data; LOF; 62H30 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11634-017-0292-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:12:y:2018:i:2:d:10.1007_s11634-017-0292-z

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-017-0292-z

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:12:y:2018:i:2:d:10.1007_s11634-017-0292-z