EconPapers    
Economics at your fingertips  
 

Cluster-based sparse topical coding for topic mining and document clustering

Parvin Ahmadi (), Iman Gholampour () and Mahmoud Tabandeh ()
Additional contact information
Parvin Ahmadi: Sharif University of Technology
Iman Gholampour: Sharif University of Technology
Mahmoud Tabandeh: Sharif University of Technology

Advances in Data Analysis and Classification, 2018, vol. 12, issue 3, No 5, 537-558

Abstract: Abstract In this paper, we introduce a document clustering method based on Sparse Topical Coding, called Cluster-based Sparse Topical Coding. Topic modeling is capable of improving textual document clustering by describing documents via bag-of-words models and projecting them into a topic space. The latent semantic descriptions derived by the topic model can be utilized as features in a clustering process. In our proposed method, document clustering and topic modeling are integrated in a unified framework in order to achieve the highest performance. This framework includes Sparse Topical Coding, which is responsible for topic mining, and K-means that discovers the latent clusters in documents collection. Experimental results on widely-used datasets show that our proposed method significantly outperforms the traditional and other topic model based clustering methods. Our method achieves from 4 to 39% improvement in clustering accuracy and from 2% to more than 44% improvement in normalized mutual information.

Keywords: Document clustering; Topic model; Sparse topical coding; K-means; 68T50 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11634-017-0280-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:12:y:2018:i:3:d:10.1007_s11634-017-0280-3

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-017-0280-3

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:12:y:2018:i:3:d:10.1007_s11634-017-0280-3