Unifying data units and models in (co-)clustering
Christophe Biernacki () and
Alexandre Lourme ()
Additional contact information
Christophe Biernacki: Inria and CNRS
Alexandre Lourme: University of Bordeaux
Advances in Data Analysis and Classification, 2019, vol. 13, issue 1, No 2, 7-31
Abstract:
Abstract Statisticians are already aware that any task (exploration, prediction) involving a modeling process is largely dependent on the measurement units for the data, to the extent that it should be impossible to provide a statistical outcome without specifying the couple (unit,model). In this work, this general principle is formalized with a particular focus on model-based clustering and co-clustering in the case of possibly mixed data types (continuous and/or categorical and/or counting features), and this opportunity is used to revisit what the related data units are. Such a formalization allows us to raise three important spots: (i) the couple (unit,model) is not identifiable so that different interpretations unit/model of the same whole modeling process are always possible; (ii) combining different “classical” units with different “classical” models should be an interesting opportunity for a cheap, wide and meaningful expansion of the whole modeling process family designed by the couple (unit,model); (iii) if necessary, this couple, up to the non-identifiability property, could be selected by any traditional model selection criterion. Some experiments on real data sets illustrate in detail practical benefits arising from the previous three spots.
Keywords: Measurement units; Mixed data; Mixture models; Model selection; Non-identifiability; 62H30 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11634-018-0325-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:13:y:2019:i:1:d:10.1007_s11634-018-0325-2
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-018-0325-2
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().