EconPapers    
Economics at your fingertips  
 

sARI: a soft agreement measure for class partitions incorporating assignment probabilities

Abby Flynt (), Nema Dean () and Rebecca Nugent ()
Additional contact information
Abby Flynt: Bucknell University
Nema Dean: University of Glasgow
Rebecca Nugent: Carnegie Mellon University

Advances in Data Analysis and Classification, 2019, vol. 13, issue 1, No 13, 303-323

Abstract: Abstract Agreement indices are commonly used to summarize the performance of both classification and clustering methods. The easy interpretation/intuition and desirable properties that result from the Rand and adjusted Rand indices, has led to their popularity over other available indices. While more algorithmic clustering approaches like k-means and hierarchical clustering produce hard partition assignments (assigning observations to a single cluster), other techniques like model-based clustering include information about the certainty of allocation of objects through class membership probabilities (soft partitions). To assess performance using traditional indices, e.g., the adjusted Rand index (ARI), the soft partition is mapped to a hard set of assignments, which commonly overstates the certainty of correct assignments. This paper proposes an extension of the ARI, the soft adjusted Rand index (sARI), with similar intuition and interpretation but also incorporating information from one or two soft partitions. It can be used in conjunction with the ARI, comparing the similarities of hard to soft, or soft to soft partitions to the similarities of the mapped hard partitions. Simulation study results support the intuition that in general, mapping to hard partitions tends to increase the measure of similarity between partitions. In applications, the sARI more accurately reflects the cluster boundary overlap commonly seen in real data.

Keywords: Adjusted Rand index; Model-based clustering; Mixture models; Soft partition; Posterior probabilities; Class membership probabilities; 62H30; 91C20; 62H86 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11634-018-0346-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:13:y:2019:i:1:d:10.1007_s11634-018-0346-x

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-018-0346-x

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:13:y:2019:i:1:d:10.1007_s11634-018-0346-x