EconPapers    
Economics at your fingertips  
 

A method for selecting the relevant dimensions for high-dimensional classification in singular vector spaces

Dawit G. Tadesse () and Mark Carpenter
Additional contact information
Dawit G. Tadesse: Cincinnati Children’s Hospital Medical Center
Mark Carpenter: Auburn University

Advances in Data Analysis and Classification, 2019, vol. 13, issue 2, No 4, 405-426

Abstract: Abstract In this paper, we give a new feature selection algorithm for the binary class classification problem in sparse high-dimensional spaces. Singular value decomposition (SVD) is a popular dimension reduction method in higher-dimensional classification. The traditional SVD method begins by ranking the Singular Dimensions (SDs) from largest singular value to the smallest. However, when the number of signals is fewer than the number of noise, the first few ranked SDs are not necessarily the best for classification. We demonstrate, theoretically and empirically, that our method efficiently selects the SDs most appropriate for classification and significantly reduces the misclassification error. We also apply our method to real data text mining applications.

Keywords: Feature selection; Fisher discriminant; Naive Bayes; Singular value decomposition (SVD); Text mining; 62H30 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11634-018-0311-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:13:y:2019:i:2:d:10.1007_s11634-018-0311-8

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-018-0311-8

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:13:y:2019:i:2:d:10.1007_s11634-018-0311-8