EconPapers    
Economics at your fingertips  
 

Model-based approach for household clustering with mixed scale variables

Christian Carmona (), Luis Nieto-Barajas () and Antonio Canale ()
Additional contact information
Christian Carmona: University of Oxford
Luis Nieto-Barajas: ITAM
Antonio Canale: University of Padua

Advances in Data Analysis and Classification, 2019, vol. 13, issue 2, No 11, 559-583

Abstract: Abstract The Ministry of Social Development in Mexico is in charge of creating and assigning social programmes targeting specific needs in the population for the improvement of the quality of life. To better target the social programmes, the Ministry is aimed to find clusters of households with the same needs based on demographic characteristics as well as poverty conditions of the household. Available data consists of continuous, ordinal, and nominal variables, all of which come from a non-i.i.d complex design survey sample. We propose a Bayesian nonparametric mixture model that jointly models a set of latent variables, as in an underlying variable response approach, associated to the observed mixed scale data and accommodates for the different sampling probabilities. The performance of the model is assessed via simulated data. A full analysis of socio-economic conditions in households in the Mexican State of Mexico is presented.

Keywords: Bayes nonparametrics; Complex design; Latent variables; Multivariate normal; Poisson–Dirichlet process; 62D05; 62G86; 62P25; 62H30 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11634-018-0313-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:13:y:2019:i:2:d:10.1007_s11634-018-0313-6

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-018-0313-6

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:13:y:2019:i:2:d:10.1007_s11634-018-0313-6