EconPapers    
Economics at your fingertips  
 

Investigating consumers’ store-choice behavior via hierarchical variable selection

Toshiki Sato, Yuichi Takano () and Takanobu Nakahara
Additional contact information
Toshiki Sato: University of Tsukuba
Yuichi Takano: University of Tsukuba
Takanobu Nakahara: Senshu University

Advances in Data Analysis and Classification, 2019, vol. 13, issue 3, No 3, 639 pages

Abstract: Abstract This paper is concerned with a store-choice model for investigating consumers’ store-choice behavior based on scanner panel data. Our store-choice model enables us to evaluate the effects of the consumer/product attributes not only on the consumer’s store choice but also on his/her purchase quantity. Moreover, we adopt a mixed-integer optimization (MIO) approach to selecting the best set of explanatory variables with which to construct the store-choice model. We devise two MIO models for hierarchical variable selection in which the hierarchical structure of product categories is used to enhance the reliability and computational efficiency of the variable selection. We assess the effectiveness of our MIO models through computational experiments on actual scanner panel data. These experiments are focused on the consumer’s choice among three types of stores in Japan: convenience stores, drugstores, and (grocery) supermarkets. The computational results demonstrate that our method has several advantages over the common methods for variable selection, namely, the stepwise method and $$L_1$$ L 1 -regularized regression. Furthermore, our analysis reveals that convenience stores are most strongly chosen for gift cards and garbage disposal permits, drugstores are most strongly chosen for products that are specific to drugstores, and supermarkets are most strongly chosen for health food products by women with families.

Keywords: Store choice; Variable selection; Mixed-integer optimization; Multiple regression analysis; Scanner panel data; 62-07; Data; analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11634-018-0327-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:13:y:2019:i:3:d:10.1007_s11634-018-0327-0

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-018-0327-0

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:13:y:2019:i:3:d:10.1007_s11634-018-0327-0