Data projections by skewness maximization under scale mixtures of skew-normal vectors
Jorge M. Arevalillo () and
Hilario Navarro ()
Additional contact information
Jorge M. Arevalillo: University Nacional Educación a Distancia (UNED)
Hilario Navarro: University Nacional Educación a Distancia (UNED)
Advances in Data Analysis and Classification, 2020, vol. 14, issue 2, No 9, 435-461
Abstract:
Abstract Multivariate scale mixtures of skew-normal distributions are flexible models that account for the non-normality of data by means of a tail weight parameter and a shape vector representing the asymmetry of the model in a directional fashion. Its stochastic representation involves a skew-normal vector and a non negative mixing scalar variable, independent of the skew-normal vector, that injects tail weight behavior into the model. In this paper we look into the problem of finding the projection that maximizes skewness for vectors that follow a scale mixture of skew-normal distribution; when a simple condition on the moments of the mixing variable is fulfilled, it can be shown that the direction yielding the maximal skewness is proportional to the shape vector. This finding stresses the directional nature of the shape vector to regulate the asymmetry; it also provides the theoretical foundations motivating the skewness based projection pursuit problem in this class of distributions. Some examples that illustrate the application of our results are also given; they include a simulation experiment with artificial data, which sheds light on the usefulness and implications of our results, and the application to real data.
Keywords: Skew-normal; Scale mixtures of skew-normal distributions; Maximal skewness projection; 62-07 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11634-020-00388-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:14:y:2020:i:2:d:10.1007_s11634-020-00388-6
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-020-00388-6
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().