EconPapers    
Economics at your fingertips  
 

Modelling heterogeneity: on the problem of group comparisons with logistic regression and the potential of the heterogeneous choice model

Gerhard Tutz ()
Additional contact information
Gerhard Tutz: Ludwig-Maximilians-Universität München

Advances in Data Analysis and Classification, 2020, vol. 14, issue 3, No 2, 517-542

Abstract: Abstract The comparison of coefficients of logit models obtained for different groups is widely considered as problematic because of possible heterogeneity of residual variances in latent variables. It is shown that the heterogeneous logit model can be used to account for this type of heterogeneity by considering reduced models that are identified. A model selection strategy is proposed that can distinguish between effects that are due to heterogeneity and substantial interaction effects. In contrast to the common understanding, the heterogeneous logit model is considered as a model that contains effect modifying terms, which are not necessarily linked to variances but can also represent other types of heterogeneity in the population. The alternative interpretation of the parameters in the heterogeneous logit model makes it a flexible tool that can account for various sources of heterogeneity. Although the model is typically derived from latent variables it is important that for the interpretation of parameters the reference to latent variables is not needed. Latent variables are considered as a motivation for binary models, but the effects in the models can be interpreted as effects on the binary response.

Keywords: Heterogeneous choice model; Location–scale model; Heterogeneity of variances; Logit model; Group comparisons; Non-contingent response style; 62J12; 62H99; 62P25 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11634-019-00381-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:14:y:2020:i:3:d:10.1007_s11634-019-00381-8

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-019-00381-8

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:14:y:2020:i:3:d:10.1007_s11634-019-00381-8