EconPapers    
Economics at your fingertips  
 

The GNG neural network in analyzing consumer behaviour patterns: empirical research on a purchasing behaviour processes realized by the elderly consumers

Kamila Migdał-Najman (), Krzysztof Najman () and Sylwia Badowska ()
Additional contact information
Kamila Migdał-Najman: University of Gdansk
Krzysztof Najman: University of Gdansk
Sylwia Badowska: University of Gdansk

Advances in Data Analysis and Classification, 2020, vol. 14, issue 4, No 13, 947-982

Abstract: Abstract The paper sheds light on the use of a self-learning GNG neural network for identification and exploration of the purchasing behaviour patterns. The test has been conducted on the data collected from consumers aged 60 years and over, with regard to three product purchases. The primary data used to explore the purchasing behaviour patterns was collected during a survey carried out among the elderly students at the Universities of Third Age in Slovenia, the Czech Republic and Poland, in the years 2017–2018. Finally, a total of six different types of purchasing patterns have been identified, namely the ‘thoughtful decision’, the ‘sensitive to recommendation’, the ‘beneficiary, the ‘short thoughtful decision’, the ‘habitual decision’ and ‘multiple’ patterns. The most significant differences in the purchasing patterns of the three national samples have been identified with regard to the process of purchasing a smartphone, while the most repetitive patterns have been identified with regard to the purchasing of a new product. The results significantly support the GNG network’s validity for identification of consumer behaviour patterns. The application of this method allowed quick and effective to identify and segment consumers groups as well as facilitated the mapping of the differences among these groups and to compare the consumption behaviour expressed by consumers on different markets. The identified consumer purchase patterns may play a basic role for marketers to understand consumer behaviour and then propose tailored strategies in international marketing.

Keywords: GNG neural network; Consumer behaviour; Consumer purchasing pattern; Consumer 60 and over; Elderly; Smartphone; 68T07; 91B42; 90B60 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11634-020-00415-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:14:y:2020:i:4:d:10.1007_s11634-020-00415-6

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-020-00415-6

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:14:y:2020:i:4:d:10.1007_s11634-020-00415-6