EconPapers    
Economics at your fingertips  
 

A bivariate finite mixture growth model with selection

David Aristei, Silvia Bacci (), Francesco Bartolucci and Silvia Pandolfi
Additional contact information
Silvia Bacci: University of Florence

Advances in Data Analysis and Classification, 2021, vol. 15, issue 3, No 9, 759-793

Abstract: Abstract A model is proposed to analyze longitudinal data where two response variables are available, one of which is a binary indicator of selection and the other is continuous and observed only if the first is equal to 1. The model also accounts for individual covariates and may be considered as a bivariate finite mixture growth model as it is based on three submodels: (i) a probit model for the selection variable; (ii) a linear model for the continuous variable; and (iii) a multinomial logit model for the class membership. To suitably address endogeneity, the first two components rely on correlated errors as in a standard selection model. The proposed approach is applied to the analysis of the dynamics of household portfolio choices based on an unbalanced panel dataset of Italian households over the 1998–2014 period. For this dataset, we identify three latent classes of households with specific investment behaviors and we assess the effect of individual characteristics on households’ portfolio choices. Our empirical findings also confirm the need to jointly model risky asset market participation and the conditional portfolio share to properly analyze investment behaviors over the life-cycle.

Keywords: Endogeneity; Household portfolio choices; Latent class model; Latent trajectories; Longitudinal data; Selection model; 62H30 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11634-020-00433-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:15:y:2021:i:3:d:10.1007_s11634-020-00433-4

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-020-00433-4

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:spr:advdac:v:15:y:2021:i:3:d:10.1007_s11634-020-00433-4