A convergent algorithm for bi-orthogonal nonnegative matrix tri-factorization
Andri Mirzal ()
Additional contact information
Andri Mirzal: King Fahd University of Petroleum and Minerals
Advances in Data Analysis and Classification, 2021, vol. 15, issue 4, No 10, 1069-1102
Abstract:
Abstract A convergent algorithm for nonnegative matrix factorization (NMF) with orthogonality constraints imposed on both basis and coefficient matrices is proposed in this paper. This factorization concept was first introduced by Ding et al. (Proceedings of 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 126–135, 2006) with intent to further improve clustering capability of NMF. However, as the original algorithm was developed based on multiplicative update rules, the convergence of the algorithm cannot be guaranteed. In this paper, we utilize the technique presented in our previous work Mirzal (J Comput Appl Math 260:149–166, 2014a; Proceedings of the first international conference on advanced data and information engineering (DaEng-2013). Springer, pp 177–184, 2014b; IEEE/ACM Trans Comput Biol Bioinform 11(6):1208–1217, 2014c) to develop a convergent algorithm for this problem and prove that it converges to a stationary point inside the solution space. As it is very hard to numerically show the convergence of an NMF algorithm due to the slow convergence and numerical precision issues, experiments are instead performed to evaluate whether the algorithm has the nonincreasing property (a necessary condition for the convergence) where it is shown that the algorithm has this property. Further, clustering capability of the algorithm is also inspected by using Reuters-21578 data corpus.
Keywords: Clustering methods; Convergent algorithm; Nonnegative matrix factorization; Orthogonality constraint; 65F30; 15A23 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11634-021-00447-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:15:y:2021:i:4:d:10.1007_s11634-021-00447-6
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-021-00447-6
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().