Robust optimal classification trees under noisy labels
Victor Blanco (),
Alberto Japón () and
Justo Puerto ()
Additional contact information
Victor Blanco: Universidad de Granada
Alberto Japón: Universidad de Sevilla
Justo Puerto: Universidad de Sevilla
Advances in Data Analysis and Classification, 2022, vol. 16, issue 1, No 7, 155-179
Abstract:
Abstract In this paper we propose a novel methodology to construct Optimal Classification Trees that takes into account that noisy labels may occur in the training sample. The motivation of this new methodology is based on the superaditive effect of combining together margin based classifiers and outlier detection techniques. Our approach rests on two main elements: (1) the splitting rules for the classification trees are designed to maximize the separation margin between classes applying the paradigm of SVM; and (2) some of the labels of the training sample are allowed to be changed during the construction of the tree trying to detect the label noise. Both features are considered and integrated together to design the resulting Optimal Classification Tree. We present a Mixed Integer Non Linear Programming formulation for the problem, suitable to be solved using any of the available off-the-shelf solvers. The model is analyzed and tested on a battery of standard datasets taken from UCI Machine Learning repository, showing the effectiveness of our approach. Our computational results show that in most cases the new methodology outperforms both in accuracy and AUC the results of the benchmarks provided by OCT and OCT-H.
Keywords: Multiclass classification; Optimal classification trees; Support vector machines; Mixed integer non linear programming; Classification; Hyperplanes; 62H30; 90C11; 68T05; 32S22 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11634-021-00467-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:16:y:2022:i:1:d:10.1007_s11634-021-00467-2
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-021-00467-2
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().