How many data clusters are in the Galaxy data set?
Bettina Grün (),
Gertraud Malsiner-Walli and
Sylvia Frühwirth-Schnatter
Additional contact information
Bettina Grün: Wirtschaftsuniversität Wien
Gertraud Malsiner-Walli: Wirtschaftsuniversität Wien
Sylvia Frühwirth-Schnatter: Wirtschaftsuniversität Wien
Advances in Data Analysis and Classification, 2022, vol. 16, issue 2, No 5, 325-349
Abstract:
Abstract In model-based clustering, the Galaxy data set is often used as a benchmark data set to study the performance of different modeling approaches. Aitkin (Stat Model 1:287–304) compares maximum likelihood and Bayesian analyses of the Galaxy data set and expresses reservations about the Bayesian approach due to the fact that the prior assumptions imposed remain rather obscure while playing a major role in the results obtained and conclusions drawn. The aim of the paper is to address Aitkin’s concerns about the Bayesian approach by shedding light on how the specified priors influence the number of estimated clusters. We perform a sensitivity analysis of different prior specifications for the mixtures of finite mixture model, i.e., the mixture model where a prior on the number of components is included. We use an extensive set of different prior specifications in a full factorial design and assess their impact on the estimated number of clusters for the Galaxy data set. Results highlight the interaction effects of the prior specifications and provide insights into which prior specifications are recommended to obtain a sparse clustering solution. A simulation study with artificial data provides further empirical evidence to support the recommendations. A clear understanding of the impact of the prior specifications removes restraints preventing the use of Bayesian methods due to the complexity of selecting suitable priors. Also, the regularizing properties of the priors may be intentionally exploited to obtain a suitable clustering solution meeting prior expectations and needs of the application.
Keywords: Bayes; Cluster analysis; Galaxy data set; Mixture model; Prior specification; 62H30; 62F15; 62C10; 62G07 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11634-021-00461-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:16:y:2022:i:2:d:10.1007_s11634-021-00461-8
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-021-00461-8
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().