EconPapers    
Economics at your fingertips  
 

Factor and hybrid components for model-based clustering

Jason Hou-Liu () and Ryan P. Browne ()
Additional contact information
Jason Hou-Liu: University of Waterloo
Ryan P. Browne: University of Waterloo

Advances in Data Analysis and Classification, 2022, vol. 16, issue 2, No 7, 373-398

Abstract: Abstract A major challenge when performing model-based clustering is a large increase in the number of free parameters as the data dimensionality increases. To combat this issue, parsimonious methods such allow component covariance matrices to share parameters by exploiting geometric redundancies. The present work considers an additional level of intracluster structure that also captures hybridisation of mean and covariance parameters between components for the multivariate normal distribution. We posit components with heterogeneous parameterisation; a subset are considered factor components and have explicit mean and covariance parameters, and the remainder are considered hybrid components that have means and covariances implied by a set of factor loadings that weight factor component parameters. An estimation procedure is provided using the Expectation-Maximization algorithm, and comparison to Gaussian mixture models with parsimonious covariances is made by evaluation on a collection of datasets.

Keywords: Model-based clustering; Intracluster structure; Factor loadings; Multivariate normal; Mixture model; Expectation-maximization; 62-08:; Computational; methods; for; problems; pertaining; to; statistics (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11634-021-00483-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:16:y:2022:i:2:d:10.1007_s11634-021-00483-2

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-021-00483-2

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:16:y:2022:i:2:d:10.1007_s11634-021-00483-2