Gaussian mixture model with an extended ultrametric covariance structure
Carlo Cavicchia (),
Maurizio Vichi () and
Giorgia Zaccaria ()
Additional contact information
Carlo Cavicchia: Erasmus University Rotterdam
Maurizio Vichi: University of Rome La Sapienza
Giorgia Zaccaria: University of Rome La Sapienza
Advances in Data Analysis and Classification, 2022, vol. 16, issue 2, No 8, 399-427
Abstract:
Abstract Gaussian Mixture Models (GMMs) are one of the most widespread methodologies for model-based clustering. They assume a multivariate Gaussian distribution for each component of the mixture, centered at the mean vector and with volume, shape and orientation derived by the covariance matrix. To reduce the large number of parameters produced by the covariance matrices, parsimonious parameterizations of the latter were proposed in literature, e.g., the eigen-decomposition and the parsimonious GMMs based on mixtures of probabilistic principal component analyzers and mixtures of factor analyzers. We introduce a new parameterization of a covariance matrix by defining an extended ultrametric covariance matrix and we implement it into a GMM. This structure can be used to describe multidimensional phenomena which are characterized by nested latent concepts having different levels of abstraction, from the most specific to the most general. The proposal is able to pinpoint a hierarchical structure on variables for each component of the GMM, thus identifying a different characterization of a multidimensional phenomenon for each component (cluster, subpopulation) of the mixture. At the same time, it defines a new parsimonious GMM since the ultrametric covariance structure reconstructs the relationships among variables with a limited number of parameters. The proposal is applied on synthetic and real data. On the former it shows good performance in terms of classification when compared to the other existing parameterizations, and on the latter it also provides insight into the hierarchical relationships among the variables for each cluster.
Keywords: Ultrametric matrices; Parsimonious models; Cluster analysis; Hierarchical models; 62H30; 62H25 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11634-021-00488-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:16:y:2022:i:2:d:10.1007_s11634-021-00488-x
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-021-00488-x
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().