Nonparametric estimation of directional highest density regions
Paula Saavedra-Nieves () and
Rosa M. Crujeiras
Additional contact information
Paula Saavedra-Nieves: Universidade de Santiago de Compostela
Rosa M. Crujeiras: Universidade de Santiago de Compostela
Advances in Data Analysis and Classification, 2022, vol. 16, issue 3, No 10, 796 pages
Abstract:
Abstract Highest density regions (HDRs) are defined as level sets containing sample points of relatively high density. Although Euclidean HDR estimation from a random sample, generated from the underlying density, has been widely considered in the statistical literature, this problem has not been contemplated for directional data yet. In this work, directional HDRs are formally defined and plug-in estimators based on kernel smoothing and associated confidence regions are proposed. We also provide a new suitable bootstrap bandwidth selector for plug-in HDRs estimation based on the minimization of an error criteria that involves the Hausdorff distance between the boundaries of the theoretical and estimated HDRs. An extensive simulation study shows the performance of the resulting estimator for the circle and for the sphere. The methodology is applied to analyze two real data sets in animal orientation and seismology.
Keywords: Bootstrap; Confidence regions; Directional data; Hausdorff distance; Highest density regions; Kernel density estimation; Level sets; 62G05; 62G07 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11634-021-00457-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:16:y:2022:i:3:d:10.1007_s11634-021-00457-4
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-021-00457-4
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().