Sparse dimension reduction based on energy and ball statistics
Emmanuel Jordy Menvouta (),
Sven Serneels () and
Tim Verdonck ()
Additional contact information
Emmanuel Jordy Menvouta: KU Leuven
Sven Serneels: Aspen Technology
Tim Verdonck: KU Leuven
Advances in Data Analysis and Classification, 2022, vol. 16, issue 4, No 6, 975 pages
Abstract:
Abstract Two new methods for sparse dimension reduction are introduced, based on martingale difference divergence and ball covariance, respectively. These methods can be utilized straightforwardly as sufficient dimension reduction (SDR) techniques to estimate a sufficient dimension reduced subspace, which contains all information sufficient to explain a dependent variable. Moreover, owing to their sparsity, they intrinsically perform sufficient variable selection (SVS) and present two attractive new approaches to variable selection in a context of nonlinear dependencies that require few model assumptions. The two new methods are compared to a similar existing approach for SDR and SVS based on distance covariance, as well as to classical and robust sparse partial least squares. A simulation study shows that each of the new estimators can achieve correct variable selection in highly nonlinear contexts, yet are sensitive to outliers and computationally intensive. The study sheds light on the subtle differences between the methods. Two examples illustrate how they can be applied in practice, with a slight preference for the option based on martingale difference divergence in a bioinformatics example.
Keywords: (Sufficient) dimension reduction; SDR; (Sufficient) variable selection; SVS; Nonparametric multivariate statistics; Sparse estimators; 62G05; 62H12 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11634-021-00470-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:16:y:2022:i:4:d:10.1007_s11634-021-00470-7
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-021-00470-7
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().