On mathematical optimization for clustering categories in contingency tables
Emilio Carrizosa (),
Vanesa Guerrero () and
Dolores Romero Morales ()
Additional contact information
Emilio Carrizosa: Instituto de Matemáticas de la Universidad de Sevilla (IMUS)
Vanesa Guerrero: Universidad Carlos III de Madrid
Dolores Romero Morales: Copenhagen Business School
Advances in Data Analysis and Classification, 2023, vol. 17, issue 2, No 6, 407-429
Abstract:
Abstract Many applications in data analysis study whether two categorical variables are independent using a function of the entries of their contingency table. Often, the categories of the variables, associated with the rows and columns of the table, are grouped, yielding a less granular representation of the categorical variables. The purpose of this is to attain reasonable sample sizes in the cells of the table and, more importantly, to incorporate expert knowledge on the allowable groupings. However, it is known that the conclusions on independence depend, in general, on the chosen granularity, as in the Simpson paradox. In this paper we propose a methodology to, for a given contingency table and a fixed granularity, find a clustered table with the highest $$\chi ^2$$ χ 2 statistic. Repeating this procedure for different values of the granularity, we can either identify an extreme grouping, namely the largest granularity for which the statistical dependence is still detected, or conclude that it does not exist and that the two variables are dependent regardless of the size of the clustered table. For this problem, we propose an assignment mathematical formulation and a set partitioning one. Our approach is flexible enough to include constraints on the desirable structure of the clusters, such as must-link or cannot-link constraints on the categories that can, or cannot, be merged together, and ensure reasonable sample sizes in the cells of the clustered table from which trustful statistical conclusions can be derived. We illustrate the usefulness of our methodology using a dataset of a medical study.
Keywords: Contingency tables; Mathematical optimization; Relational constraints; Clustering; 90C90; 90C27 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11634-022-00508-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:17:y:2023:i:2:d:10.1007_s11634-022-00508-4
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-022-00508-4
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().