EconPapers    
Economics at your fingertips  
 

New models for symbolic data analysis

Boris Beranger (), Huan Lin and Scott Sisson
Additional contact information
Boris Beranger: UNSW Data Science Hub (uDASH), University of New South Wales
Huan Lin: UNSW Data Science Hub (uDASH), University of New South Wales
Scott Sisson: UNSW Data Science Hub (uDASH), University of New South Wales

Advances in Data Analysis and Classification, 2023, vol. 17, issue 3, No 5, 659-699

Abstract: Abstract Symbolic data analysis (SDA) is an emerging area of statistics concerned with understanding and modelling data that takes distributional form (i.e. symbols), such as random lists, intervals and histograms. It was developed under the premise that the statistical unit of interest is the symbol, and that inference is required at this level. Here we consider a different perspective, which opens a new research direction in the field of SDA. We assume that, as with a standard statistical analysis, inference is required at the level of individual-level data. However, the individual-level data are unobserved, and are aggregated into observed symbols—group-based distributional-valued summaries—prior to the analysis. We introduce a novel general method for constructing likelihood functions for symbolic data based on a desired probability model for the underlying measurement-level data, while only observing the distributional summaries. This approach opens the door for new classes of symbol design and construction, in addition to developing SDA as a viable tool to enable and improve upon classical data analyses, particularly for very large and complex datasets. We illustrate this new direction for SDA research through several real and simulated data analyses, including a study of novel classes of multivariate symbol construction techniques.

Keywords: Binned data; Interval data; Likelihoods; Summary statistics; Symbol design; 62H86; 62R07 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11634-022-00520-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:17:y:2023:i:3:d:10.1007_s11634-022-00520-8

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-022-00520-8

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:17:y:2023:i:3:d:10.1007_s11634-022-00520-8