EconPapers    
Economics at your fingertips  
 

Semiparametric finite mixture of regression models with Bayesian P-splines

Marco Berrettini (), Giuliano Galimberti and Saverio Ranciati ()
Additional contact information
Marco Berrettini: University of Bologna
Giuliano Galimberti: University of Bologna

Advances in Data Analysis and Classification, 2023, vol. 17, issue 3, No 8, 745-775

Abstract: Abstract Mixture models provide a useful tool to account for unobserved heterogeneity and are at the basis of many model-based clustering methods. To gain additional flexibility, some model parameters can be expressed as functions of concomitant covariates. In this Paper, a semiparametric finite mixture of regression models is defined, with concomitant information assumed to influence both the component weights and the conditional means. In particular, linear predictors are replaced with smooth functions of the covariate considered by resorting to cubic splines. An estimation procedure within the Bayesian paradigm is suggested, where smoothness of the covariate effects is controlled by suitable choices for the prior distributions of the spline coefficients. A data augmentation scheme based on difference random utility models is exploited to describe the mixture weights as functions of the covariate. The performance of the proposed methodology is investigated via simulation experiments and two real-world datasets, one about baseball salaries and the other concerning nitrogen oxide in engine exhaust.

Keywords: Mixture of experts models; Gibbs sampling; Data augmentation; 62H30 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11634-022-00523-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:17:y:2023:i:3:d:10.1007_s11634-022-00523-5

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-022-00523-5

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:17:y:2023:i:3:d:10.1007_s11634-022-00523-5