EconPapers    
Economics at your fingertips  
 

Mixture modeling with normalizing flows for spherical density estimation

Tin Lok James Ng () and Andrew Zammit-Mangion
Additional contact information
Tin Lok James Ng: Trinity College Dublin
Andrew Zammit-Mangion: University of Wollongong

Advances in Data Analysis and Classification, 2024, vol. 18, issue 1, No 6, 103-120

Abstract: Abstract Normalizing flows are objects used for modeling complicated probability density functions, and have attracted considerable interest in recent years. Many flexible families of normalizing flows have been developed. However, the focus to date has largely been on normalizing flows on Euclidean domains; while normalizing flows have been developed for spherical and other non-Euclidean domains, these are generally less flexible than their Euclidean counterparts. To address this shortcoming, in this work we introduce a mixture-of-normalizing-flows model to construct complicated probability density functions on the sphere. This model provides a flexible alternative to existing parametric, semiparametric, and nonparametric, finite mixture models. Model estimation is performed using the expectation maximization algorithm and a variant thereof. The model is applied to simulated data, where the benefit over the conventional (single component) normalizing flow is verified. The model is then applied to two real-world data sets of events occurring on the surface of Earth; the first relating to earthquakes, and the second to terrorist activity. In both cases, we see that the mixture-of-normalizing-flows model yields a good representation of the density of event occurrence.

Keywords: Spherical density estimation; Mixture model; Normalizing flows; 62G07; 62P12 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11634-023-00561-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:18:y:2024:i:1:d:10.1007_s11634-023-00561-7

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-023-00561-7

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:18:y:2024:i:1:d:10.1007_s11634-023-00561-7