EconPapers    
Economics at your fingertips  
 

Model-based clustering of functional data via mixtures of t distributions

Cristina Anton () and Iain Smith ()
Additional contact information
Cristina Anton: MacEwan University
Iain Smith: MacEwan University

Advances in Data Analysis and Classification, 2024, vol. 18, issue 3, No 3, 563-595

Abstract: Abstract We propose a procedure, called T-funHDDC, for clustering multivariate functional data with outliers which extends the functional high dimensional data clustering (funHDDC) method (Schmutz et al. in Comput Stat 35:1101–1131, 2020) by considering a mixture of multivariate t distributions. We define a family of latent mixture models following the approach used for the parsimonious models considered in funHDDC and also constraining or not the degrees of freedom of the multivariate t distributions to be equal across the mixture components. The parameters of these models are estimated using an expectation maximization algorithm. In addition to proposing the T-funHDDC method, we add a family of parsimonious models to C-funHDDC, which is an alternative method for clustering multivariate functional data with outliers based on a mixture of contaminated normal distributions (Amovin-Assagba et al. in Comput Stat Data Anal 174:107496, 2022). We compare T-funHDDC, C-funHDDC, and other existing methods on simulated functional data with outliers and for real-world data. T-funHDDC outperforms funHDDC when applied to functional data with outliers, and its good performance makes it an alternative to C-funHDDC. We also apply the T-funHDDC method to the analysis of traffic flow in Edmonton, Canada.

Keywords: Functional data analysis; Model-based clustering; Multivariate t distributions; EM algorithm; Multivariate functional principal components analysis; 62H30; 68T10; 62F35 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11634-023-00542-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:18:y:2024:i:3:d:10.1007_s11634-023-00542-w

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-023-00542-w

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:18:y:2024:i:3:d:10.1007_s11634-023-00542-w