EconPapers    
Economics at your fingertips  
 

Profile-based latent class distance association analyses for sparse tables:application to the attitude of European citizens towards sustainable tourism

Francesca Bassi (), José Fernando Vera () and Juan Antonio Marmolejo Martín ()
Additional contact information
Francesca Bassi: University of Padova
José Fernando Vera: Faculty of Sciences, University of Granada
Juan Antonio Marmolejo Martín: Faculty of Social and Legal Sciences, University of Granada

Advances in Data Analysis and Classification, 2024, vol. 18, issue 4, No 6, 953-980

Abstract: Abstract Social and behavioural sciences often deal with the analysis of associations for cross-classified data. This paper focuses on the study of the patterns observed on European citizens regarding their attitude towards sustainable tourism, specifically their willingness to change travel and tourism habits to be more sustainable. The data collected the intention to comply with nine sustainable actions; answers to these questions generated individual profiles; moreover, European country belonging is reported. Therefore, unlike a variable-oriented approach, here we are interested in a person-oriented approach through profiles. Some traditional methods are limited in their performance when using profiles, for example, by sparseness of the contingency table. We removed many of these limitations by using a latent class distance association model, clustering the row profiles into classes and representing these together with the categories of the response variable in a low-dimensional space. We showed, furthermore, that an easy interpretation of associations between clusters’ centres and categories of a response variable can be incorporated in this framework in an intuitive way using unfolding. Results of the analyses outlined that citizens mostly committed to an environmentally friendly behavior live in Sweden and Romania; citizens less willing to change their habits towards a more sustainable behavior live in Belgium, Cyprus, France, Lithuania and the Netherlands. Citizens preparedness to change habits however depends also on their socio-demographic characteristics such as gender, age, occupation, type of community where living, household size, and the frequency of travelling before the Covid-19 pandemic.

Keywords: Clustering; Person-based analysis; Unfolding; Circular economy; Sustainability; Tourism; European union; 62; Statistics (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11634-023-00559-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:18:y:2024:i:4:d:10.1007_s11634-023-00559-1

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-023-00559-1

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:18:y:2024:i:4:d:10.1007_s11634-023-00559-1